بِسم اللهِ الرَّحمٰنِ الرَّحِيمِ

Devoir Libre N° 1

Théorie des ensembles

 $\mathcal{P}(E)$

MPSI 1

Rappel

A Rappelons aussi que Ø désigne l'esemble vide.

 \mathbb{Z}_0 L'application identité de E est l'application $\mathrm{Id}_E: E \to E$, définie pour tout $x \in E$ par $\mathrm{Id}_E(x) = x$.

Ø

Exercice 1 Soit $f: \mathbb{N} \to \mathbb{N}$ une application strictement croissante. Montrer que pour tout $n \in \mathbb{N}$; $n \leq f(n)$.

Exercice 2 Soit E un ensemble non vide, et $f:E\to E$ une application vérifiant; $f\circ f=f$. Montrer l'équivalence entre :

- 1. f injective,
- 2. f surjective, et
- $f = \mathrm{Id}_E$

PROBLÈME 1

Soit *E* un ensemble.

1. Montrer que si, A, B et C sont des parties de E alors :

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

- 2. Montrer que si A et B sont des parties de E, alors :
 - (a) $A \cap B = A$ si, et seulement si, $A \subseteq B$, et
 - (b) $A \cup B = A$ si, et seulement si, $B \subseteq A$.

Dans la suite on fixe deux parties A et B de E et considère l'application $f: \mathcal{P}(E) \to \mathcal{P}(E)$ définie pour tout $X \in \mathcal{P}(E)$ par $f(X) = (X \cup A) \cap B$.

- 3. (a) Déterminer f dans les deux cas : A = E et $B = \emptyset$.
 - (b) Calculer: f(E), $f(\emptyset)$, $f(\overline{A})$ et $f(\overline{B})$.
- 4. Montrer que f est croissante au sens de l'inclusion, c'est-à-dire que, pour X et X' deux parties de E vérifiant $X \subseteq X'$, on a $f(X) \subseteq f(X')$.

- 5. Soit Y une partie de E. Montrer que les propriétés suivantes sont équivalentes :
 - (a) Y admet un antécédent dans $\mathcal{P}(E)$ pour l'application f,
 - (b) $A \cap B \subseteq Y \subseteq B$,
 - (c) f(Y) = Y.
- 6. Montrer que $f \circ f = f$.
- 7. (a) Quelle est l'image de $\mathcal{P}(E)$ par f.
 - (b) Montrer que f est surjective si, et seulement si, $A \cap B = \emptyset$ et B = E. Exploiter le résultat de la question 5....
 - (c) Montrer que f est constante si, et seulement si, $A \cap B = B$.
 - (d) Déterminer une condition nécessaire et suffisante sur les parties A et B pour que l'application f soit injective.
- 8. Résoudre l'équation f(X) = A.

Indication : on pourra distinguer les deux cas $A \subseteq B$ et $A \nsubseteq B$

PROBLÈME 2

Définitions

Soit E un ensemble et $T \subseteq \mathcal{P}(E)$ (écoutez mois bien! T est un ensemble formé par des parties de E.).

- 1. $\emptyset \in T$; (*T* contient l'ensemble vide),
- 2. Si $A \in T$ alors $A \in T$; (T stable par passage au complementaire),
- 3. Si $A, B \in T$ alors $A \cup B \in T$; (T stable par union finie).
- 🖾 On dit que T est une tribu si T vérifie les propriétés 1. et 2. de la définition précédente et :
- (\star) pour toute famille $(A_n)_{n\in\mathbb{N}}$ d'éléments de T, on a $\cup_{n\in\mathbb{N}}A_n\in T$ (T est stable par union dénombrable "ensemble d'indices est \mathbb{N} ").
- \angle On résume : une tribu sur E est une algèbre sur E dans laquelle la propriété 3. a été remplacée par la propriété (\star).

Øn.

Première partie:

Questions préliminaires.

Soient *E* , *F* deux ensembles et $f: E \rightarrow F$ une application.

- 1. Que vaut $f^{-1}(\emptyset)$? $f^{-1}(F)$?
- 2. Montrer que pour toute partie A de F on a : $f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$.
- 3. Montrer que pour toute famille $(A_n)_{n\in\mathbb{N}}$ de parties de F on a : $f^{-1}(\cup_{n\in\mathbb{N}}A_n)=\cup_{n\in\mathbb{N}}f^{-1}(A_n)$.
- 4. Montrer que pour toute famille $(A_n)_{n\in\mathbb{N}}$ de parties de F on a : $f^{-1}(\cap_{n\in\mathbb{N}}A_n)=\cap_{n\in\mathbb{N}}f^{-1}(A_n)$.
- 5. Montrer que pour toute famille $(B_n)_{n \in \mathbb{N}}$ de parties de E on a : $\overline{\bigcup_{n \in \mathbb{N}} B_n} = \bigcap_{n \in \mathbb{N}} \overline{B_n} \text{ et } \overline{\bigcap_{n \in \mathbb{N}} B_n} = \bigcup_{n \in \mathbb{N}} \overline{B_n}$

Deuxième partie:

Quelques exemples et propriétés.

6. Exemples:

- (a) Tribu **Grossière**: Montrer que $T := \{\emptyset, E\}$ est une tribu sur E.
- (b) Tribu **discrète**: Montrer que $T := \mathcal{P}(E)$ est une tribu sur E.
- (c) Algèbre engendrée par une partie : Soit A une partie de E, montrer que $T := \{\emptyset, A, \overline{A}, E\}$ est une algèbre sur E (c'est aussi une tribu sur E).
- 7. **Propriétés :** Soit *T* une tribu sur un ensemble *E*.
 - (a) Montrer que $E \in T$.
 - (b) Montrer que pour toute famille d'éléments de T, on a $\cap_{n\in\mathbb{N}}A_n\in T$ (autrement dit T est stable par intersection dénombrable).
- 8. Montrer qu'une tribu est une algèbre.

Troisième partie:

Image réciproque et trace.

- 9. Soit $f: E \to F$ une application et T' une tribu sur F. Montrer que $T:=\{f^{-1}(A), A \in T'\}$ est une tribu sur E.
- 10. Soit E un ensemble, B est une partie de E et T une tribu sur E. Montrer que $T_B := \{B \cap A, A \in T\}$ est une tribu sur B.

