

## **Devoir Libre** $N^{\circ}$ 1

**Ensembles et applications** 

PCSI

## Questions de Cours

- 1. Rappeler la définition d'une application injective.
- 2. Rappeler la défnition d'une application surjective.
- 3. Soit  $f: E \to F$  une application, A une partie de E et B une partie de F. Rappeler la définition de l'image directe f(A) et de l'image réciproque  $f^{-1}(B)$ . Completer la caractérisation suivante :  $x \in f^{-1}(B) \Leftrightarrow ...$

#### **Exercice 1**

- 1. On considère l'assertion suivante :
  - $\mathcal{P}$ : Tout nombre réel est le carré d'un nombre réel positif .
  - [1.1] Écrire à l'aide des quantificateurs l'assertion  $\mathscr{P}$ .
  - [1.2] Donner la négation de l'assertion  $\mathscr{P}$ .
  - 1.3 L'assertion  $\mathcal{P}$  est-elle vraie?
- 2. Soit  $f : \mathbb{R} \to \mathbb{R}$  une application, et Q l'assertion :
  - Q: f est une fonction croissante sur  $\mathbb{R}$ .
  - 2.1 Écrire à l'aide des quantificateurs l'assertion Q.
  - 2.2 Donner la négation de l'assertion Q.

#### **Exercice 2**

Soit  $f: \mathbb{R} \to \mathbb{R}$  une application vérifiant :

$$\forall (x,y) \in \mathbb{R}^2 \ , \ f(x+y) = f(x) + f(y)$$

- 1. Montrer que f(0) = 0.
- 2. Montrer que pour tout  $x \in \mathbb{R}$ , f(-x) = -f(x).
- 3. Soit  $x \in \mathbb{R}$ .
  - 3.1 Montrer, par récurrence, que pour tout  $n \in \mathbb{N}$ , f(nx) = nf(x).
  - 3.2 En déduire que pour tout  $n \in \mathbb{Z}$ , f(nx) = nf(x).





### Première partie : Questions préliminaires

Soit  $f: E \to F$  une application, C et D deux parties de F

- 1. Montrer que  $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ .
- 2. Montrer que  $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ .
- 3. Montrer que si  $C \subseteq D$ , alors  $f^{-1}(C) \subseteq f^{-1}(D)$ .
- 4. Soit  $x \in E$ . Montrer que  $x \in f^{-1}(\overline{C})$  si, et seulement si,  $x \notin f^{-1}(C)$ . En déduire que  $f^{-1}(\overline{C}) = \overline{f^{-1}(C)}$ .
- 5. Vérifier que  $f^{-1}(\emptyset) = \emptyset$  et  $f^{-1}(F) = E$ .

# Deuxième partie: Propriétés d'une application

Soit  $f: E \to F$  une application, A une partie de E, et  $\varphi: \mathscr{P}(F) \to \mathscr{P}(E)$  l'application définie, pour tout  $X \in \mathscr{P}(F)$ , par

$$\varphi(X) = A \setminus f^{-1}(X)$$

- **6.** Justifier, que pour tout  $X \in \mathcal{P}(F)$ ,  $\varphi(X) = A \cap \overline{f^{-1}(X)}$
- 7. Déterminer  $\varphi(\emptyset)$  et  $\varphi(F)$ .
- 8. Soient X et X' deux parties de F.
  - 8.1 Montrer que  $\varphi(X \cup X') = \varphi(X) \cap \varphi(X')$ .
  - 8.2 Montrer que  $\varphi(X \cap X') = \varphi(X) \cup \varphi(X')$ .
  - 8.3 Montrer que si  $X \subseteq X'$ , alors  $\varphi(X') \subseteq \varphi(X)$ .
- 9. Pour  $X \in \mathcal{P}(F)$ . Justifier que  $\varphi(\overline{X}) = A \cap f^{-1}(X)$ .
- 10. Dans la suite, on suppose que A = E et que f est surjective.
  - 10.1 Soient  $X, X' \in \mathcal{P}(E)$  telles que  $f^{-1}(X) = f^{-1}(X')$ . Montrer que X = X'.
  - 10.2 En déduire que  $\varphi$  est injective.

