

Devoir Libre N° 2 Arithmétiques dans \mathbb{Z} PCSI

Exercice 1

Résoudre dans \mathbb{Z}^2 l'équation : 26x + 14y = 6.

PROBLÈME

Première partie Une démonstration du théorème de Bézout

Le but de cette partie est de démontrer le théorème de Bézout : Si $a, b \in \mathbb{Z}$, et $d = a \land b$, alors ils existent $u, v \in \mathbb{Z}$ tels que au + bv = d.

On considère deux entiers $a, b \in \mathbb{Z}$ non nuls et notons $d = a \wedge b$. On pose $H = \{an + bm / n, m \in \mathbb{Z}\}$.

- 1. Montrer que si $x \in H$, alors $-x \in H$.
- 2. Montrer que si $x, y \in H$, alors $x + y \in H$, en déduire que si $x \in H$ et $k \in \mathbb{Z}$, alors $kx \in H$.
- 3. Montrer que si $x, y \in H$, alors $x y \in H$. Dans la suite de cette partie , on pose $H^+ = H \cap \mathbb{N}^*$.
- 4. Justifier que H^+ est non vide, en déduire que H^+ admet un plus petit élément δ .
- 5. Montrer que d divise δ , en déduire que $d \le \delta$.
- 6. Notons r le reste de la division euclidienne de a par δ de sorte que $a = k\delta + r$. Montrer que $r \in H$, en déduire que r = 0.
- [7.] Montrer que δ divise b.
- [8.] En déduire que $\delta = d$.
- 9. Conclusion.

Deuxième partie Inverse modulo *n*

Soient $a, b \in \mathbb{Z}$, on dit que a est congrue à b modulo n et on note $a \equiv b$ [n], si $n \mid (b-a)$ (n divise b-a).

- 10. Montrer que la relation \equiv est une relation d'équivalence sur \mathbb{Z} .
- 11. Montrer que si $a \equiv b[n]$ et $k \in \mathbb{Z}$, alors $ka \equiv kb[n]$.
- 12. Montre que si $a \equiv b[n]$ et $a' \equiv b'[n]$ alors $a + a' \equiv b + b'[n]$ et $aa' \equiv bb'[n]$.
- 13. Montrer que si r est le reste de la division euclidienne de a par n, alors $a \equiv r[n]$.
- Soit $(a, n) \in \mathbb{Z}^2$ avec n non nul. On dit que a est inversible modulo n, s'il existe $a' \in \mathbb{Z}$ tel que $aa' \equiv 1[n]$.
 - On suppose que a admet un inverse a' modulo n i.e aa' = 1[n]. Montrer qu'il existe $b \in \mathbb{Z}$ tel que aa' + bn = 1. En déduire que a et n sont premiers entre eux.
 - 14.2 Montrer que si a et n sont premiers entre eux, alors a est inversible modulo n.

