بِسم اللهِ الرَّحمٰنِ الرَّحِيمِ

Devoir Surveillé N° 3

sup

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédation.

inf

PCSI 1

Questions de Cours

Cours

Exercice 1

Exercice 2

$$\left\{ \begin{array}{lll} x + y + z + t + 2s & = & 2 \\ 2x + y + 2z + 2t + s & = & 0 \end{array} \right. \stackrel{\Rightarrow}{\underset{L_2 \leftarrow L_2 - 2L_1}{\Rightarrow}} \left\{ \begin{array}{ll} x + y + z + t + 2s & = & 2 \\ & -y - 3s & = & -4 \end{array} \right.$$

Les inconnues principales : x et y.

Les inconnues secondaires :
$$z$$
 , t et s .
On a donc
$$\begin{cases} x = -y-z-t-2s+2=-z-t+s-2 \\ y = -3s+4 \end{cases}$$
 , d'où

$$S = \{(-z - t + s - 2, -3s + 4, z, t, s) \in \mathbb{R}^5 \ / \ z, t, s \in \mathbb{R}\}$$

Exercice 3 (1.)

$$f(x+\frac{1}{n}) = \sum_{i=0}^{n-1} [x+\frac{1}{n}+\frac{i}{n}] - [nx+1]$$
$$= \sum_{i=0}^{n-1} [x+\frac{i+1}{n}] - [nx] - 1$$

$$= \sum_{i=1}^{n} [x + \frac{i}{n}] - [nx] - 1$$

$$= \sum_{i=0}^{n-1} [x + \frac{i}{n}] + \underbrace{[x+1]}_{\text{le terme d'indice } i=n} - \underbrace{[x]}_{\text{le terme d'indice } i=0} - [nx] - 1$$

$$= \sum_{i=0}^{n-1} [x + \frac{i}{n}] - [nx]$$

$$= f(x)$$

- 2. Soit $x \in [0, \frac{1}{n}[$. On a $nx \in [0, 1[$, donc [nx] = 0. Si i est un entier comprisentre 0 et n-1 alors $0 \le x + \frac{i}{n} < \frac{1}{n} + \frac{n-1}{n} = 1$ d'où $[x + \frac{i}{n}] = 0$, il vient alors que f(x) = 0.
- 3. La fonction f est $\frac{1}{n}$ -périodique et nulle sur $[0, \frac{1}{n}[$ (un intervalle de longueur $\frac{1}{n}$), donc nulle sur \mathbb{R} .

PROBLÈME

Étude d'une partie

Dans tout le problème A désigne la partie suivante :

$$A = \{p + q\sqrt{2} \ / \ p, q \in \mathbb{Z}\}$$

On pourra utiliser, sans démonstration, que $\sqrt{2} \notin \mathbb{Q}$.

Première partie : Questions préliminaires

- 1. Si $x, y \in A$ alors ils existent $p, q, p', q' \in \mathbb{Z}$ tels que $x = p + q\sqrt{2}$ et $y = p' + q'\sqrt{2}$. Donc $x + y = (p + p') + (q + q')\sqrt{2} \in A$ et $x y = (p p') + (q q')\sqrt{2} \in A$.
- ②. Soit $x = p + q\sqrt{2} \in A$ où $p, q \in \mathbb{Z}$. Supposons que x = 0 donc $-p = q\sqrt{2}$. Si $q \neq 0$ alors $\sqrt{2} = \frac{-p}{q} \in \mathbb{Q}$ (contradiction!). Par suite q = 0 et donc p = 0.
- 3. Soit $x \in A$.
 - [3.1] Par récurrence sur $n \in \mathbb{N}$. Pour n = 0: $nx = 0 = 0 + 0\sqrt{2} \in A$. Soit $n \in \mathbb{N}$, et supposons que $nx \in A$. On a (n + 1)x = nx + x et comme $x \in A$ et $nx \in A$, alors (par le résultat de la première question), $nx + x \in A$, i.e $(n + 1)x \in A$.
 - (3.2) On a $0 \in A$ et $x \in A$, par le résultat de la première question $-x = 0 x \in A$. Soit $n \in \mathbb{Z}$, si $n \ge 0$, alors $nx \in A$. Si n < 0 alors $-n \in N$, et donc $(-n)x \in A$, c'est-à-dire $-nx \in A$, par le résultat précédent $nx = -(-nx) \in A$.

Deuxième partie : Une borne inférieure

Dans toute la suite A_+^* désigne la partie :

$$A_+^* = A \cap \mathbb{R}_+^*$$

- (4.) On a $1 = 1 + 0\sqrt{2} \in A$ et $1 \in \mathbb{R}_+^*$ donc $A_+^* \neq \emptyset$.
- (5.) A_+^* est non vide et minorée par 0, d'après l'axiome de la borne supérieure, il admet une borne inférieure.

Dans la suite du problème on note α la borne inférieure de A_+^* c'est-à-dire $\alpha = \inf A_+^*$

- 6. On suppose dans cette question que $\alpha \in A_+^*$.
 - 6.1) On a $\alpha \in A$ donc (par le résultat de la question 3.1) pour tout $n \in \mathbb{N}$, $n\alpha \in A$. On pose $N = [\frac{1}{\alpha}]$ (la partie entière de $\frac{1}{\alpha}$).
 - 6.2) On a $1 \in A$ et $N\alpha \in A$ alors $1 N\alpha \in A$. Par définition de la partie entière $N \le \frac{1}{\alpha} < N + 1$, donc (en multipliant par $\alpha > 0$), $N\alpha \le 1 < N\alpha + \alpha$, d'où $0 \le 1 - N\alpha < \alpha$.
 - 6.3 Si $1 \neq N\alpha$ alors $1 N\alpha > 0$, et donc $1 N\alpha A \cap \mathbb{R}_+^* = A_+^*$ et $1 N\alpha < \alpha$, contradiction avec le fait que α est la borne inférieure de A_+^* . Il vient alors que $1 = N\alpha$. Puisque $\alpha \in A$, alors ils existent $p, q \in \mathbb{Z}$ tels que $\alpha = p + q\sqrt{2}$, d'où $1 = N\alpha = Np + Nq\sqrt{2}$, ou encore $(Np-1) + Nq\sqrt{2} = 0$, par le résultat de la question 2, on a Np-1 = 0 et Nq = 0, comme $N \neq 0$ car $N\alpha = 1$, alors q = 0, et donc $p = \alpha > 0$, mais Np = 1 implique p = 1, d'où $\alpha = 1$. On a donc $1 = \inf A_+^*$ ce qui est une contradiction car (par exemple) $2 \sqrt{2} \in A_+^*$ et $2 \sqrt{2} < 1$.
- (7.) L'hypothèse $\alpha \in A_+^*$ conduit à une contradiction (question précédente) donc $\alpha \notin A_+^*$.
- [8.] Par l'absurde on suppose que $\alpha \neq 0$ donc $\alpha > 0$. Par la caractérisation de la borne inférieure avec $\varepsilon = \frac{\alpha}{2} > 0$, il existe $a_2 \in A_+^*$ tel que $\alpha \leq a_2 < \alpha + \varepsilon = \alpha + \frac{\alpha}{2}$. Puisque $a_2 \in A_+^*$ et $\alpha \not\in A_+^*$ alors $\alpha < a_2$, en appliquant la caractérisation de la borne inférieure, il existe $a_1 \in A_+^*$ tel que $\alpha \leq a_1 < a_2$ ou encore $\alpha < a_1 < a_2$ (car $a_1 \neq \alpha$), on a donc $\alpha \leq a_1 < a_2 < \alpha + \frac{\alpha}{2}$, d'où $0 < a_2 a_1 < (\alpha + \frac{\alpha}{2}) \alpha = \frac{\alpha}{2} < \alpha$, contradiction avec le fait que $\alpha = \inf A_+^*$, $a_2 a_1 \in A_+^*$ et $a_2 a_1 < \alpha$. Conclusion $\alpha = 0$.

Deuxième partie : Densité

Soient $x, y \in \mathbb{R}$ tels que x < y.

- 9. On a $0 = \inf A_+^*$, par la caractérisation de la borne inférieure avec $\varepsilon = y x > 0$, il existe $a \in A_+^*$ tel que $0 \le a < y x$ mais $a \in A_+^*$, donc 0 < a < y x.
- (10.) Il suffit de diviser dans l'inégalité par a.

 Puisque $\frac{y}{a} \frac{x}{a} > 1$, alors il existe $n \in \mathbb{Z}$ tel que $\frac{x}{a} < n < \frac{y}{a}$, et en multipliant les membres de l'inégalité par a on obtient x < na < y.
- [11.] Si $x, y \in \mathbb{R}$ avec x < y, par les résultats des questions précédentes, il existe $n \in \mathbb{Z}$ et $a \in A$ tel que x < na < y, comme $na \in A$, alors il existe $z = na \in A$ tel que x < z < y. Conclusion : A est une partie dense dans \mathbb{R}

END

PCSI 1 3 /3 Mohamed Agalmoun