Devoir Surveillé N° 3

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédaction.

PCSI

Questions de cours

- 1.) Rappeler la définition d'un nombre premier.
- (2.) Rappeler la définition de deux entiers premiers entre eux.
- 3.) Enoncer le théorème de la division euclidienne. Soit $f: E \to F$ une application, A une partie de E et B une partie de F.
- (4.) Rappeler la définition de f(A).
- (5.) Rappeler la définition de f $^{-1}(B)$.

[AZ]

Exercice 1

Résoudre, en indiquant les opérations élémentaires, le système linéaire suivant :

$$\begin{cases} x + 2y + z + t &= 1 \\ x + y - z - t &= 2 \\ 2x + 4y + z + 2t &= 3 \end{cases}$$

Exercice 2

Résoudre dans \mathbb{Z}^2 les deux équations suivantes :

$$(1.) 15x + 12y = 3.$$

$$(2.) 55x + 22y = 40.$$

Exercice 3

Soit n un entier impair. Montrer que les deux entiers n et n + 2 sont premiers entre eux.

Exercice 4

Soient a et b deux entiers premiers entre eux.

- (1.) Vérifier que a^2 et b^2 sont premiers entre eux.
- (2.) Montrer que a + b et ab sont premiers entre eux.

PROBLÈME Petit théorème de Fermat

Dans tout le problème p désigne un entier premier ≥ 2 .

Questions préliminaires

- 1. Soient $a_1, \ldots, a_n \in \mathbb{Z}$. Montrer que si p divise le produit $a_1 \ldots a_n$ alors p divise l'un des entiers a_i . Indication : on pourra raisonner par récurrence.
- 2. Montrer que p et (p-1)! sont premiers entre eux. Indication : utiliser le résultat de la question précédente.
- (3.) Soit $n \in \mathbb{Z}$ et r le reste de la division euclidienne de n par p. Justifier que p divise n-r.
- 4. Soient k, k' deux entiers tels que $1 \le k, k' \le p-1$. Montrer que si p divise k-k' alors k=k'. Indication : justifier d'abord que |k-k'| < p.
- (5.) Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$ tels que pour tout $1 \le i \le n$, p divise $a_i b_i$. Montrer que p divise $\prod_{i=1}^n a_i \prod_{i=1}^n b_i$. Indication : on pourra raisonner par récurrence sur n.

Première partie : Petit théorème de Fermat

Dans cette partie A désigne l'ensemble $A = \{1, 2, ..., p-1\}$ et $a \in \mathbb{Z}$. Pour $k \in A$, on note r_k le reste de la division euclidienne de ka par p.

- 6. Montrer que si p n'est pas premier avec α alors p divise $\alpha^p \alpha$.

 On suppose, jusqu'à la fin de cette partie, que α et p sont premiers entre eux.
- (7.) Justifier, pour $k \in A$, que $r_k \in A$ et que p divise $ka r_k$.
- 8. En déduire que p divise $(p-1)!a^{p-1} \prod_{k=1}^{p-1} r_k$. Indication : utiliser le résultat de la question 5.
- 9. Soient $k, k' \in A$. Montrer que si $r_k = r_{k'}$ alors k = k'. En déduire que $A = \{r_1, r_2, \dots, r_{p-1}\}$.
- $\fbox{10.}$ Montrer que $\prod_{k=1}^{p-1} r_k = (p-1)!$. Indication : utiliser le résultat de la question précédente.
- 11. Montrer que p divise $a^{p-1} 1$, puis que p divise $a^p a$. Indication : exploiter les résultats des guestions 2. et 8..

Deuxième partie : Une application

Soient p et q deux entiers premiers positifs distincts ($p \neq q$) et m = pq.

- 12. Justifier que $\mathfrak{p} \wedge \mathfrak{q} = 1$.
- (13.) Soit $a \in \mathbb{Z}$. Montrer que a est premier avec \mathfrak{m} si, et seulement si, a est premier avec \mathfrak{p} et \mathfrak{q} .

On suppose, dans la suite de cette partie, que a est premier avec m.

- 14. Montrer que $a^{p-1}-1$ et $a^{q-1}-1$ divisent $a^{(p-1)(q-1)}-1$.
- 15.) En déduire que p et q divisent $\mathfrak{a}^{(p-1)(q-1)}-1$
- 16.) Montrer que m divise $a^{(p-1)(q-1)} 1$.