Algèbre

بِسمِ اللهِ الرَّحمٰنِ الرَّحِيمِ

## Devoir Surveillé $N^{\circ}$ 4

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédation.

PCSI

## Questions de Cours

- 1. Rappeler le théorème de la division euclidienne dans  $\mathbb{K}[X]$ .
- 2. Rappeler la définition d'un polynôme irréductible.
- 3. Rappeler la définition d'un polynôme scindé.
- 4. Rappeler la définition d'une racine de multiplicité m.
- $\boxed{5.}$  Quelles sont les polynômes irréductibles de  $\mathbb{R}[X]$ ?

#### Exercice 1

Soit *P* le polynôme  $P = X^6 - X^3$ .

- $\boxed{1.}$  Déterminer les racines de P.
- 2. Factoriser dans  $\mathbb{C}[X]$ , puis dans  $\mathbb{R}[X]$  le polynôme P.
- 3. Soit *F* la fraction rationnelle  $F = \frac{X^4}{P}$ .
  - 3.1 Donner le degré et les pôles de F (dans  $\mathbb{C}$ ).
  - 3.2 Décomposer F en éléments simples dans  $\mathbb{C}(X)$ .

### **Exercice 2**

Soit *P* le polynôme  $P = X^4 - 4X^3 + 7X^2 - 6X + 2$ .

- 1. Calculer P(1), P'(1) et P''(1).
- 2. Vérifier que  $(X-1)^2$  divise P.
- 3. En effectuant la division euclidienne de P par  $(X-1)^2$ , déterminer un polynôme Q tel que  $P=(X-1)^2Q$ .
- 4. Factoriser le polynôme *P*.

**Exercice 3** Soit  $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ , et Q le polynôme  $Q = \sum_{k=0}^{n} \overline{a}_{n-k} X^k$ .

1. Montrer que pour tout nombre complexe z de module 1, on a  $Q(z) = z^n \overline{P(z)}$ .

On suppose, dans la suite que, pour tout nombre complexe z de module 1; on a |P(z)| = 1.

PCSI 1 /2 Mohamed Agalmoun

- 2. Montrer que pour tout nombre complexe z de module 1, on a  $Q(z)P(z) = z^n$ .
- 3. En déduire que  $QP = X^n$
- 4. En déduire l'ensemble des polynômes P tels que  $P(\mathbb{U}) \subseteq \mathbb{U}$ .

## **PROBLÈME**

Une suite de polynômes

# Première partie : Un test de divisibilité par $X^2 + 1$

Dans cette partie  $P \in \mathbb{R}[X]$  un polynôme à coefficients dans  $\mathbb{R}$ .

- 1. Vérifier que si  $X^2 + 1$  divise P, alors P(i) = 0
- 2. On suppose dans cette question que P(i) = 0. Notons R le reste de la division euclidienne de P par  $X^2 + 1$ .
  - $\boxed{2.1}$  Donner la forme de R.
  - 2.2 Vérifier que R(i) = 0.
  - 2.3 Montrer que R = 0.

### Deuxième partie : Une suite de polynômes

Pour  $n \in \mathbb{N}$ , on note  $P_n$  le polynôme  $P_n = X^{4n+2} + 1$ .

- 3. Déterminer  $P_0$  et  $P_1$ .
- $\boxed{4.}$  Factorisation de  $P_1$ :
  - 4.1 Déterminer le degré et le coefficient dominat de  $P_1$ .
  - 4.2 Montrer que les racines de  $P_1$  sont les complexes  $z_k = e^{\frac{i(2k+1)\pi}{6}}$ , où  $k \in \{0,1,\ldots,5\}$ .
  - 4.3 En déduire la factorisation de  $P_1$  dans  $\mathbb{C}[X]$ .
  - 4.4 Donner (seulement) la forme de la décomposition en éléments simples dans  $\mathbb{C}(X)$  de la fraction  $\frac{1}{p}$ .

# Troisième partie : Factorisation de $P_n$

- 5. Vérifier que  $X^2 + 1$  divise  $P_n$ .
- 6. Montrer que  $P_n = P_0(X^{2n+1})$ .
- 7. En déduire que  $P_n = (X^{2n+1} i)(X^{2n+1} + i)$ .
- [8.] Résoudre dans  $\mathbb{C}$ , l'équation  $z^{2n+1} = i$ . En déduire les solutions de l'équation  $z^{2n+1} = -i$ .
- 9. Donner la factorisation de  $P_n$  dans  $\mathbb{C}[X]$ .

