Devoir Surveillé N° 1

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédation.

 $\mathscr{L}(E)$

PSI

Définition

Soit E un \mathbb{K} espace vectoriel, u un endomorphisme de E et $A \in \mathcal{M}_n(\mathbb{K})$.

- ∠ On dit que u est une homothétie s'il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda \operatorname{Id}_E$
- \triangle On dit que A est une matrice scalaire s'il existe $\lambda \in \mathbb{K}$ tel que $A = \lambda I_n$.

L

Questions de cours

- 1. Rappeler la définition de la somme des sous espaces vectoriels E_1, \ldots, E_r .
- 2. Rappeler la définition de la somme directe des sous espaces vectoriels E_1, \ldots, E_r .
- 3. Rappeler la définition d'une forme linéaire sur un espace vectoriel E.
- 4. Rappelr la définition d'un hyperplan d'un espace vectoriel *E*.
- 5. Donner un résultat du cours qui caractérise les hyperplans à l'aide des formes linéaires.

Ø.

Exercice 1

- 1. Montrer que $H := \{A \in \mathcal{M}_n(\mathbb{K}) / \text{tr } A = 0\}$ est un hyperplan de $\mathcal{M}_n(\mathbb{K})$.
- 2. Soit $\varphi : \mathbb{K}[X] \to \mathbb{K}$ l'application définie par : $\varphi(P) = P(1)$.
 - 2.1 Montrer que φ est une forme linéaire non nulle sur $\mathbb{K}[X]$.
 - 2.2 En déduire que $\mathbb{K}[X] = \ker \varphi \oplus \operatorname{Vect}(X)$.

PROBLÈME

Le but du problème est de démontrer que toute matrice A de $\mathcal{M}_2(\mathbb{K})$ non scalaire est semblable à la matrice $\begin{pmatrix} 0 & -\det A \\ 1 & \operatorname{tr} A \end{pmatrix}$

Une question préliminaire :

Soit E un \mathbb{K} espace vectoriel de dimension finie , u un endomorphisme de E et A la matrice de u dans une base \mathscr{B} .

1. Montrer que *u* est une hamothétie si, et seulement si, *A* est une matrice scalaire.

Première partie : Un exemple

Dans cette partie A désigne la matrice

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

On note u l'endomorphisme de $E = \mathbb{K}^2$ canoniquement associé à la matrice A. Enfin $B = (e_1, e_2)$ désigne la base canonique de E.

- 2. Vérifier que la matrice A est inversible.
- 3. Déterminer $u(e_1)$ et $u(e_2)$. Dans la suite de cette partie $v_1 = e_1$ et $v_2 = u(e_1)$.
- [4.] Déterminer les deux vecteurs v_1 et v_2 .
- [5.] Montrer que (v_1, v_2) est une base de E.
- [6.] Déterminer deux nombres α et β tels que $u(v_2) = \alpha v_1 + \beta v_2$.
- 7. Déterminer la matrice de u dans la base (v_1, v_2) .
- 8. En déduire que la matrice A est semblable à la matrice $\begin{pmatrix} 0 & -\det A \\ 1 & \operatorname{tr}(A) \end{pmatrix}$.

Deuxième partie :

Une caractérisation des homothéties

Dans cette partie E désigne un \mathbb{K} -espace vectoriel et u un endomorphisme de E vérifiant :

 $\forall x \in E$, la famille (x, u(x)) est liée.

- 9. Montrer que pour tout $x \in E \setminus \{0\}$, il existe un unique $\lambda_x \in \mathbb{K}$ tel que $u(x) = \lambda_x x$.
- 10. Soit $x, y \in E \setminus \{0\}$.
 - 10.1 Montrer que si la famille (x, y) est liée, alors $\lambda_x = \lambda_y$.
 - Montrer que si la famille (x, y) est libre, alors $\lambda_x = \lambda_y$. Indication : on pourra calculer u(x+y) de deux façons.
- 11. En déduire que u est une homothétie.

Troisième partie :

Démonstration du résultat

Dans cette partie $A \in \mathcal{M}_2(\mathbb{K})$ est une matrice *non scalaire*. On désigne par u l'endomorphisme de $E = \mathbb{K}^2$ canoniquement associé à la matrice A.

- 12. Vérifier l'existence d'un vecteur $e \in E$ tel que la famille (e, u(e)) soit une base de E. On pose $v_1 = e$ et $v_2 = u(e)$. \mathcal{B} désigne la base (v_1, v_2) .
- 13. Justifier l'existence de deux nombres $a, b \in \mathbb{K}$ tels que $u(v_2) = av_1 + bv_2$.
- 14. Déterminer B la matrice de u dans la base \mathscr{B} .
- 15. En déduire que A est semblable à la matrice

$$\begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$$

16. Montrer que $b = \operatorname{tr} A$ et $a = -\det A$.