Devoir Surveillé N° 1

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédaction.

 $\mathcal{L}(E)$

PSI

Corrigé

Définition

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A et B sont semblables s'il existe une matrice inversible $P \in Gl_n(\mathbb{K})$ telle que $A = PBP^{-1}$.

Ø.

Questions de cours

Cours

PSI

Exercice 1 Soit *A* la matrice

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

On désigne par f l'endomorphisme de $E=\mathbb{R}^3$ canoniquement associé à A.

- 1. Soit $\lambda \in \mathbb{R}$, on a $P(\lambda) := \det(A \lambda I_3) = \begin{vmatrix} -\lambda & -1 & 1 \\ 0 & -1 \lambda & 1 \\ 0 & 0 & 1 \lambda \end{vmatrix} = \lambda(1 + \lambda)(1 \lambda)$.
- 2. La matrice $A \lambda I_3$ est non inversible si, et seulement si, $\det(A \lambda I_3) = 0$ si, et seulement si, $\lambda(1 + \lambda)(1 \lambda) = 0$ si, et seulement si, $\lambda \in \{0, -1, 1\}$.
- 3. Détermination du ker $f:(x,y,z) \in \ker f$ si, et seulement si, $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ si, et seulement si, y = z = 0

0. Ainsi $\ker f = \text{Vect}(1, 0, 0)$.

De même $\ker(f+\mathrm{Id}_E)=\mathrm{Vect}(1,1,0)$ et $\ker(f-\mathrm{Id}_E)=\mathrm{Vect}(1,1,2)$. Les trois vecteurs $v_1=(1,0,0)$, $v_2=(1,1,0)$, $v_3=(1,1,2)$ conviennent.

- 4. On a $\det_{\mathscr{B}_c}(v_1, v_2, v_3) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{vmatrix} = 2 \neq 0$, donc la famille est une base de E.
- 5. On a $f(v_1) = 0$, $f(v_2) = -v_2$ et $f(v_3) = v_3$, donc

$$\mathcal{D} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

www.aqalmoun.com

[6.] la matrice de passage est donné par $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. D'après la formule de changement de bases on a $A = PDP^{-1}$.

PROBLÈME

Soit $A = (a_{ij})_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbb{K})$, on appelle trace de A qu'on note tr A le nombre

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Première partie : Propriétés de la trace

Pour une matrice M, M_{ij} désigne son coefficient d'indice (i, j).

1. Soit $A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$, on a

$$\operatorname{tr}(A + \lambda B) = \sum_{i=1}^{n} (a_{ii} + \lambda b_{ii}) = \sum_{i=1}^{n} a_{ii} + \lambda \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \lambda \operatorname{tr}(B)$$

2. Soit $A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_n(\mathbb{K})$. On a

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ki} = \sum_{k=1}^{n} (BA)_{kk} = \operatorname{tr}(BA)$$

- 3. Si A et B sont semblables, alors il existe $P \in Gl_n(\mathbb{K})$ telle que $A = PBP^{-1}$. En appliquant le résultat de la question précédente, on obtient $tr(A) = tr(PBP^{-1}) = tr(P^{-1}PB) = tr(B)$
- 4. Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\operatorname{tr}(^t A) = \sum_{i=1}^n (^t A)_{ii} = \sum_{i=1}^n A_{ii} = \operatorname{tr}(A)$.
- 5. Soit $\lambda \in \mathbb{K}$. Par linéarité $\operatorname{tr}(\frac{\lambda}{n}I_n) = \frac{\lambda}{n}\operatorname{tr}(I_n) = \frac{\lambda}{n}n = \lambda$. Pour tout $\lambda \in \mathbb{K}$, on a $\lambda = \operatorname{tr}(\frac{\lambda}{n}I_n)$. Donc l'application tr est surjective.
- 6. Remarquons que H := kertr, donc c'est un sous espace vectoriel de $\mathcal{M}_n(\mathbb{K})$. D'après le résultat de la question précédente, $\text{Im}\,\text{tr} = \mathbb{K}$, donc $\text{rg}\,\text{tr} = 1$. On en déduit, en appliquant la formule du rang, que $\dim H = \dim \ker \text{tr} = n^2 \text{rg}\,\text{tr} = n^2 1$.
- [7.] Soit $A \in H \cap \text{Vect}(I_n)$. Il existe $\alpha \in \mathbb{K}$ tel que $A = \alpha I_n$. Puisque tr(A) = 0, on obtient $\alpha n = 0$, d'où $\alpha = 0$, en particulier A = 0. On en déduit alors que la somme est directe. D'autre part on a $\dim H + \dim \text{Vect}(I_n) = n^2 1 + 1 = n^2 = \dim \mathcal{M}_n(\mathbb{K})$. D'où le résultat.
- 8. Supposons qu'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB BA = I_n$. Dans ce cas $n = \operatorname{tr}(I_n) = \operatorname{tr}(AB BA) = \operatorname{tr}(AB) \operatorname{tr}(BA) = \operatorname{tr}(AB) \operatorname{tr}(AB) = 0$, ce qui n'est pas le cas.

Deuxième partie : Endomorphisme de rang 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1, et f l'endomorphisme de \mathbb{K}^n canoniquement associé à la matrice A. On désigne par \mathcal{B}_c la base canonique de E.

- 9. rg(f) = rg(A) = 1.
- 10. On a dim Im f = 1, donc Im f est une droite vectorielle. Il existe alors un vecteur non nul e tel que Im f = Vect(e).

- 11. On a $e \in \text{Im } f = f(E)$ donc existe un vecteur $e' \in E$ tel que e = f(e'). Soit $x \in \ker f \cap \text{Vect}(e')$, il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda e'$. On a alors $0 = f(x) = \lambda f(e') = \lambda e'$ donc $\lambda = 0$, puis x = 0. De plus on a dim $\ker f + \dim \text{Vect}(e') = n - 1 + 1 = n = \dim E$, il vient alors que $E = \ker f \oplus \text{Vect}(e')$.
- 12. On a $f(e) \in \text{Im } f = \text{Vcet}(e)$, donc il existe $\alpha \in \mathbb{K}$ tel que $f(e) = \alpha e$.
- [13.] Soit $\mathcal{B}_1 = (e_1, \dots, e_{n-1})$ une base du ker f. Soit $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que $\lambda_1 e_1 + \dots + \lambda_{n-1} e_{n-1} + \lambda_n e' = 0$. On a $\lambda_1 e_1 + \dots + \lambda_{n-1} e_{n-1} \in H$ et $\lambda_n e' \in \text{Vect}(e')$, donc $\lambda_1 e_1 + \dots + \lambda_{n-1} e_{n-1} = 0$ et $\lambda_n e' = 0$ (du fait que la somme H + Vcet(e') est directe). Puisque (e_1, \dots, e_{n-1}) est libre et $e' \neq 0$, il vient alors que $\lambda_1 = \dots = \lambda_{n-1} = \lambda_n = 0$. La famille \mathcal{B} est libre à n = 0 éléments, il s'agit alors d'une base de E.
- 14. Posons $f(e') = \sum_{k=1}^{n-1} \alpha_k e_k + \alpha_n e'$ (la décomposition de f(e') dans la base \mathscr{B}). On a $f(e_1) = \ldots = f(e_{n-1}) = 0$ donc les n-1 premières colonnes de B sont nulles, de plus $f(e') = \alpha_1 e_1 + \ldots + \alpha_{n-1} e_{n-1} + \alpha_n e'$. D'où

$$B = \begin{pmatrix} 0 & 0 & \dots & 0 & \alpha_1 \\ 0 & 0 & \dots & 0 & \alpha_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \alpha_n \end{pmatrix}$$

Le théorème de changement de bases assure que les deux matrices A et B sont semblables.

- 15. D'après la formule de changement de bases, les deux matrices A et B sont semblables, donc $tr(A) = tr(B) = \alpha_n$.
- [16.] Il suffit de montrer que $\alpha_n = \alpha$. En appliquant f à l'égalité $f(e') = \sum_{k=1}^{n-1} \alpha_k e_k + \alpha_n e'$ et en tenant compte que les $e_k \in \ker f$, on obtient $f(f(e')) = f(\alpha_n e')$ c'est-à-dire $f(e) = \alpha_n e$, par suite $\alpha_n e = \alpha e$, par conséquent $\alpha = \alpha_n$ (car $e \neq 0$).
- [17.] Soit $x \in E = \ker f \oplus \operatorname{Vect}(e')$, il existe $z \in \ker f$ et $\lambda \in \mathbb{K}$ tel que $x = z + \lambda e'$. On a $f(x) = f(z) + f(\lambda e') = \lambda e$, puis $f^2(x) = f(f(x)) = f(\lambda e) = \lambda f(e) = \lambda \alpha e = \alpha(\lambda e) = \alpha f(x)$. Il vient alors que $f^2 = \alpha f$. Par conséquent $A^2 = \mathcal{M}_{\mathscr{B}_c}(f^2) = \mathcal{M}_{\mathscr{B}_c}(\alpha f) = \alpha \mathcal{M}_{\mathscr{B}_c}(f) = \alpha A = \operatorname{tr}(A)A$.