Corrigé

Devoir Surveillé N° 2

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédaction.

 $\mathscr{L}(E)$

PSI

Questions de cours

Cours

Exercice 1

Soit A la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

[1.]

$$\chi_A = \det(XI_3 - A) = \begin{vmatrix} X & -1 & -1 \\ -1 & X & -1 \\ -1 & -1 & X \end{vmatrix} = L_1 \leftarrow L_1 - L_2 \begin{vmatrix} X+1 & -X-1 & 0 \\ -1 & X & -1 \\ -1 & -1 & X \end{vmatrix} = C_2 \leftarrow C_2 + C_1 \begin{vmatrix} X+1 & 0 & 0 \\ -1 & X-1 & -1 \\ -1 & -2 & X \end{vmatrix}$$
$$= (X+1)(X(X-1)-2) = (X+1)(X+1)(X-2) = (X+1)^2(X-2)$$

- [2.] Les valeurs propres de A sont : -1 et 2.
- 3. Les sous espaces propres de A: Le sous espace propre $E_{-1}(A)$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{-1}(A) \Leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = - \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow x + y + z = 0 \Leftrightarrow x = -y - z. \text{ Donc}$$

$$E_{-1}(A) = \operatorname{Vect}\left(\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\right)$$

Le sous espace propre $E_2(A)$:

$$\frac{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_2(A) \Leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases}
-2x + y + z & = 0 \\
x - 2y + z & = 0 \\
x + y - 2z & = 0
\end{cases}$$
 \Rightarrow x = y = z. Donc

$$E_2(A) = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Exercice 2

Soit E un espace vectoriel de dimension finie, u et v deux endomorphismes de E.

- 1. Si 0 est une valeur propre de uv alors det(uv) = 0, par suite $det(vu 0. Id_E) = det(vu) = 0$, ainsi 0 est une valeur propre de vu.
- 2. Soit λ une valeur propre non nulle de uv et x un vecteur propre de uv associé à λ .
 - 2.1 On a $u(v(x)) = \lambda x$. Si v(x) = 0 alors $\lambda x = 0$, or $x \neq 0$, on obtient $\lambda = 0$, ce qui contredit le fait que λ est non nulle. D'où $v(x) \neq 0$.
 - 2.2 On a $u(v(x)) = \lambda x$, donc $v(u(v(x))) = \lambda v(x)$, en d'autres termes $(vu)(v(x)) = \lambda v(x)$, or $v(x) \neq 0$, il vient que λ est une valeur propre de vu.
- 3. Soit λ une valeur propre de uv. Si $\lambda = 0$, d'après le résultat de la question 1, λ est une valeur propre de vu. Si λ est non nulle, d'après le résultat de la question précédente, λ est une valeur propre de uv. On en déduit alors que $Sp(uv) \subseteq Sp(vu)$. Avec un même raisonnement, on a $Sp(vu) \subseteq Sp(uv)$. D'où le résultat.

Exercice 3

Remarquons d'abord que X divise P si, et seulement si, P(0) = 0. Donc

$$F = \{ P \in \mathbb{K}[X] / P(0) = 0 \}$$

Soit maintenant $f : \mathbb{K}[X] \to \mathbb{K}$ l'application définie par f(P) = P(0). Clairement, f est une forme linéaire non nulle sur $\mathbb{K}[X]$ ($f(1) = 1 \neq 0$). Donc $F = \ker f$ est un hyperplan de $\mathbb{K}[X]$.

PROBLÈME

Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice telle que $A \neq 0$ et $A^3 + A = 0$. Soit u l'endomorphisme de $E = \mathbb{R}^3$ canoniquement associé à la matrice A.

Première partie : Le spectre de u

- 1. Notons \mathscr{B} la base canonique de \mathbb{R}^3 . On a $\mathscr{M}_{\mathscr{B}}(u) = A \neq 0$, donc $u \neq 0$. Aussi $\mathscr{M}_{\mathscr{B}}(u^3 + u) = A^3 + A = 0$, donc $u^3 + u = 0$.
- 2. On a $A^3 = -A$, donc $\det(A^3) = \det(-A) = (-1)^3 \det A = -\det A$, par suite $(\det(A))^3 + \det A = 0$, ou encore $\det(A) \left((\det A)^2 + 1 \right) = 0$. Or $(\det A)^2 + 1 \neq 0$, il vient alors que $\det A = 0$, donc A est non inversible.
- 3. On a $u^3 + u = 0$, donc $X^3 + X$ est un polynôme annulateur de u.
- 4. Puisque A est non inversible, 0 est une valeur propre de A. Réciproquement, si λ est une valeur propre de A (donc de u), alors λ est une racine de $X^3 + X$, donc $\lambda = 0$ (car 0 est la seule racine réelle de $X^3 + X$).

Deuxième partie : Réduction de A

Pour la suite du problème F désigne le sous espace vectoriel $F := \ker(u^2 + \operatorname{Id}_E)$.

5. Par l'absurde supposons que F = 0, donc $u^2 + \mathrm{Id}_E$ est un isomorphisme, or $u(u^2 + \mathrm{Id}_E) = 0$, il vient que u = 0, ce qui contredit le fait que $u \neq 0$.

6. On a ker $u \neq \{0\}$ car 0 est une valeur propre de u. Soit x un vecteur non nul du ker u, on a $(u^2 + \operatorname{Id}_E)(x) = u^2(x) + x = x \neq 0$, par suite $x \notin F$, d'où $F \subsetneq E$, ainsi dim $F < \dim E = 3$, il vient donc que dim $F \leq 2$.

F non nulle implique $\dim F > 0$, d'après ce qui précède, les valeurs possible de $\dim F$ sont 1 et 2.

- 7. Les deux endomorphsmes u et $u^2 + \operatorname{Id}_E$ commutent, donc $F = \ker(u^2 + \operatorname{Id}_E)$ est stable par u.
- 8. On suppose par l'absurde que dim $F \neq 2$, dans ce cas dim F = 1 c'est-à-dire que F est une droite vectorielle. Soit z un vecteur non nul de F, on a donc F = Vect(z). De la stabilité de F par u, il vient que $u(z) \in \text{Vect}(z)$. Il existe alors $\alpha \in \mathbb{R}$ tel que $u(z) = \alpha z$, en particulier $u^2(z) = \alpha u(z) = \alpha^2 z$, d'autre part $u^2(z) = -z$ car $z \in F$. On a donc $-z = \alpha^2 z$, ou encore $(\alpha^2 + 1)z = 0$. Ce qui n'est pas le cas car $z \neq 0$ et $\alpha^2 + 1 \neq 0$.
- 9. Soit $x \in \ker u \cap F$, donc u(x) = 0 et $u^2(x) + x = 0$, par suite x = 0. $\ker u$ est non nul car u n'est pas bijective (0 valeur propre de u), donc dim $\ker u \ge 1$. Par suite $3 \ge \dim(\ker u \oplus F) = \dim\ker u + \dim F \ge 1 + 2 = 3$, ainsi $\dim\ker u + \dim F = 3$. On en déduit alors que $\ker u \oplus F = E$.
- 10. Soit v l'endomorphisme induit par u sur F et e un vecteur non nul de F.
 - 10.1 F sable par u et $e \in F$, donc $u(e) \in F$.
 - dim F = 2, il suffit alors de montrer que cette famille est libre. Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha e + \beta u(e) = 0$ (\star). On applique u à cette égalité, on obtient $\alpha u(e) + \beta u^2(e) = 0$, donc $\alpha u(e) \beta e = 0$ ($\star\star$). On combinant les deux équations précédentes de la façon suivantes $\alpha(\star) \beta(\star\star)$, on obtient $(\alpha^2 + \beta^2)e = 0$, donc $\alpha = \beta = 0$ (car $e \neq 0$).
 - 10.3 On a v(e) = 0e + 1v(e) et $v(v(e)) = u^2(e) = -e + 0v(e)$, donc

$$A' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Soit e_1 un vecteur non nul du ker u (il forme alors une base du ker u). Alors la famille $(e_1, e, v(e))$ est une base de E (plus précisément, c'est une base adaptée à la somme ker $u \oplus F = E$). La matrice de u dans cette base est donnée par :

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

D'après la formule de changement de bases la matrice A est semblable à la matrice

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$