Contrôle (Algèbre 4)

Il sera tenu compte, dans l'appréciation des copies, de la précision des raisonnements ainsi que la clarté de la rédaction.

LPEM

Notations

Soit *E* un espace vectoriel et $u \in \mathcal{L}(E)$.

™ On désigne par $\mathbb{K}[u]$ l'ensemble des endomorphismes de E polynôme en u c'est-à-dire $\mathbb{K}[u] = \{P(u) \mid P \in \mathbb{K}[X]\}.$

™ On désinge par $\mathscr{C}(u)$ l'ensemble des endomorphismes de E qui commutent avec u c'està-dire $\mathscr{C}(u) = \{v \in \mathscr{L}(E) \mid uv = vu\}$.

Ø.

Questions de cours

- 1. Donner la défintion du polynôme caractéristique d'un endomorphisme.
- 2. Donner la défintion d'un sous espace stable par un endomorphisme.
- 3. Donner la défintion d'un endomorphisme diagonalisable.

d

Exercice 1 Soit *E* un espace vectoriel de dimension *n* et *p* un projecteur de *E* i.e $p^2 = p$.

- 1. Vérifier que $E = \ker(p \operatorname{Id}_E) \oplus \ker p$.
- 2. Montrer que $ker(p Id_E) = Im p$.
- [3.] Montrer que $\operatorname{rg} p = \operatorname{tr} p$. Indication : considérer une base adaptée à la somme $E = \ker(p - \operatorname{Id}_E) \oplus \ker p$.

Exercice 2 Soit *A* la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & -2 \\ 0 & 1 & -1 \end{pmatrix}$.

- 1. Calculer le polynôme caractéristique de *A*. en déduire le spectre de *A*.
- \bigcirc Déterminer les sous espaces propres de A.

PROBLÈME

Dans tout le problème E un espace vectoriel de dimension n et u un endomorphisme de E.

Première partie : Généralités

- [1.] Montrer que $\mathscr{C}(u)$ est une sous algèbre de $\mathscr{L}(E)$.
- 2. Montrer que $\mathbb{K}[u]$ est une sous algèbre de $\mathcal{L}(E)$.
- 3. Montrer que $\mathbb{K}[u] \subseteq \mathscr{C}(u)$.
- [4.] Montrer que $\mathbb{K}[u] = \{P(u) \mid P \in \mathbb{K}_{n-1}[X]\}$. Indication : effectuer la division euclidienne par χ_u , et utiliser le théorème de Cayley-Hamilton.

Deuxième partie:

Cas où u admet n valeurs propres distinctes

On suppose dans cette partie que u admet n valeurs propres deux à deux distinctes $\lambda_1, \ldots, \lambda_n$. Pour $1 \le i \le n$, notons e_i un vecteur propre de u associé à la valeur propre λ_i .

- [5.] Montrer que $\mathcal{B} := (e_1, ..., e_n)$ est une base de E.
- 6. Soit $1 \le i \le n$. Montrer que $E_{\lambda_i}(u) = \text{Vect}(e_i)$.
- 7. Déterminer la matrice de u dans la base \mathcal{B} .

 Dans la suite de cette partie v désigne un élément de $\mathcal{C}(u)$.
- 8. Montrer que $v(e_i) \in E_{\lambda_i}(u)$.
- 9. En déduire que pour tout $1 \le i \le n$, il existe $\alpha_i \in \mathbb{K}$ tel que $v(e_i) = \alpha_i e_i$.
- 10. Pour $1 \le i \le n$, on pose

$$L_{i} = \prod_{\substack{k=1\\k \neq i}}^{n} \frac{(X - \lambda_{k})}{(\lambda_{i} - \lambda_{k})}$$

- 10.1 Soit $1 \le i \le n$. Vérifier que $L_i(\lambda_i) = 1$
- 10.2 Soit $1 \le i, j \le n$, avec $i \ne j$. Montrer que $L_i(\lambda_j) = 0$.
- 10.3 Soit L le polynôme défini par $L = \sum_{k=1}^{n} \alpha_k L_k$. Montrer que pour tout $1 \le i \le n$, $L(\lambda_i) = \alpha_i$.
- 11. Montrer que pour tout $1 \le i \le n$, $L(u)(e_i) = \alpha_i e_i$.
- 12. Montrer que v = L(u).
- 13. En déduire que $\mathscr{C}(u) = \mathbb{K}[u]$.

