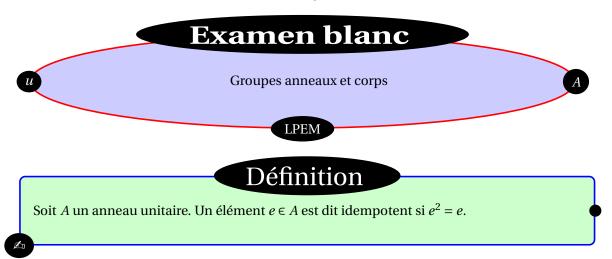
Corrigé



Exercice 1 Soit *p* un nombre premier et *G* un groupe d'ordre *p*.

- 1. L'ordre de a est un diviseur de p, donc o(a) = 1 ou o(a) = p, comme $a \ne e$, il vient alors que o(a) = p. Le sous groupe engendré par a est de cardinal p, donc égale à G. Le groupe G est cyclique donc commutatif.
- 2. Considérons l'application $f: \mathbb{Z} \to G$ définie par $f(n) = a^n$. Clairement f est un morphisme de groupes. Puisque G est engendré par a, le morphisme f est surjectif. Pour tout $n \in \mathbb{N}$, on a $f(np) = a^{np} = e$, donc $p\mathbb{Z} \subseteq \ker f$. Soit $n \in \ker f$, donc $a^n = e$, en effectuant la division euclidienne de a par p, il existe $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que a = qp + r et $0 \le r < p$. On a alors $a^n = a^{pq}a^r = a^r$, donc $a^r = e$. D'où r = 0 car $0 \le r < p$ et a est un élément d'ordre a0. Par suite $a = pq \in p\mathbb{Z}$. On en déduit alors que $a = p\mathbb{Z}$ 0. Le théorème d'isomorphisme conduit à l'isomorphisme voulu.

Exercice 2 Soit *G* un groupe d'ordre 15.

- 1. 3 est un diviseur premier de 15, par le théorème de Cauchy, G admet un élément a d'ordre 3, en particulier $a^3 = e$ et $a^2 \neq e$.
 - N.B : Notons que les conditions $a^3 = e$ et $a^2 \neq e$, signifie que a est un élément d'ordre 3. En effet $a^3 = e$, signifie que l'ordre de a divise 3, donc a est d'ordre 1 ou 3, et l'ordre de a ne peut être égale à 1 car $a^2 \neq e$, donc a est d'ordre 3.
- 2. De même 5 est un diviseur premier de G, d'après le théorème de Cauchy, G admet un élément d'ordre 5, en particulier $a^5 = e$ et $a^4 \neq e$.
 - N.B : Notons que les conditions $b^5 = e$ et $b^4 \neq e$, signifie que b est un élément d'ordre 5.
- [3.] Soit $x \in \langle a \rangle \cap \langle b \rangle$. Il existe $0 \le i \le 2$ tel que $x = a^i$ et il existe $0 \le j \le 4$ tel que $x = b^j$. On a donc $x = x^6 x^{-5} = a^{i6} a^{-5j} = (a^3)^{2i} (b^5)^{-j} = e$.
- [4.] On suppose dans cette question que ab = ba.
 - 4.1 L'ordre de *ab* est un diviseur de 15, donc égale à 1, 3, 5 ou 15.

L'ordre de ab est différent de 1. En effet, si ab = e, alors $a = b^{-1}$ ce qui impossible car a est d'ordre 3 et b^{-1} est d'ordre 5.

L'ordre de ab ne peut être égale à 3, car si $(ab)^3 = e$, alors dans ce cas $a^3b^3 = e$ c'est-à-dire $b^3 = e$ ce qui n'est pas le cas.

L'ordre de ab ne peut être égale à 5, car si $(ab)^5 = e$, alors $a^5 = e$ et donc $a^2 = e$, ce qui n'est pas le cas.

Finalement ab est un élément d'ordre 15.

4.2) ab est un élément d'ordre 15 dans G et G est un groupe d'ordre 15, donc $G = \langle ab \rangle$. On considérons le morphisme de groupe $f : \mathbb{Z} \to G$ définie par $f(n) = (ab)^n$. Ce morphisme (surjectif et e noyau ker $f = 15\mathbb{Z}$) induit un isomorphisme $\mathbb{Z}/15\mathbb{Z} \to G$.

Exercice 3 Soit *A* un anneau unitaire, tel que pour tout $x \in A$, $x^2 = x$.

- 1. Soit $x, y \in A$. On a $2x = 4x 2x = 4x^2 2x = (2x)^2 2x = 2x 2x = 0$, en d'autres termes, pour tout $x \in A$, x = -x. D'une part $(x+y)^2 = x+y$ et d'autre part $(x+y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$, donc x + y = x + xy + yx + y = x + y, on en déduit alors que xy + yx = 0, donc xy = -yx = yx. Donc l'anneau A est commutatif.
- [2.] Soit $f: \mathbb{Z} \to A$ l'application définie par $f(n) = n1_A$. L'application f est un morphisme d'anneaux. Pour tout $n \in \mathbb{N}$, on a $f(2n) = 2n1_A = 0$, donc $2\mathbb{Z} \subseteq \ker f$. Si n = 2r + 1 est impair alors $f(n) = 2r1_1 + 1_A = 1_A \neq 0$. Ainsi le noyau de f est formé par les nombres pair c'est-à-dire $\ker f = 2\mathbb{Z}$. Soit $x \in A$, comme $x^2 = x$ c'est-à-dire $x(x 1_A) = 0$ et A intègre alors x = 0 = f(0) ou $x = 1_A = f(1)$, par suite f est surjectif. On en déduit, par le théorème d'isomorphisme, que A est isomorphisme à $\mathbb{Z}/2\mathbb{Z}$.
- 3. Soit P un idéal premier de A. L'anneau A/P et intègre et pour tout $\overline{x} \in A/P$, $\overline{x}^2 = \overline{x}^2 = \overline{x}$, d'après le résultat de la question précédente, A/P est un corps (isomorphisme à $\mathbb{Z}/2\mathbb{Z}$), donc P est un idéal maximal.

PROBLÈME

Soit *A* un anneaux commutatif unitaire.

Première partie : Éléments idempotents

Soient A_1 , A_2 deux anneaux commutatifs unitaires non réduits à un seul élément.

- 1. Soit e est un élément idempotent de A, alors $(1-e)^2 = 1-2e+e^2 = 1-2e+e = 1-e$, ainsi 1-e est un élément idempotent.
- 2. Si A est intègre et e un élément idempotent de A, alors $e(1-e) = e e^2 = 0$, donc e = 0 ou e = 1.
- 3. On a $(1,0)^2 = (1^2,0^2) = (1,0)$, donc (1,0) est un élément idempotent de $A_1 \times A_2$.
- 4. Soit $f: A_1 \times A_2 \to A$ un isomorphisme et a = f(1,0). On a $a^2 = f((1,0)^2) = f(1,0) = a$, donc a est un élément idempotent de A. Puisque $(1,0) \neq (1,1)$ et f injectif, alors $1 = f(1,1) \neq f(1,0) = a$. De même $(1,0) \neq (0,0)$ et f injectif, donc $0 = f(0,0) \neq f(1,0) = a$.

Deuxième partie : Théorème chinois

Soient I et J deux idéaux de A tels que I+J=A. Soit $\varphi:A\to (A/I)\times (A/J)$ l'application définie par $\varphi(x)=(\overline{x},\overline{x})$.

- 5. Immédiate.
- 6. On a $1 \in A = I + J$, donc il existe $(i_0, j_0) \in I \times J$ tel que $1 = i_0 + j_0$.
- 7. Soit x, y deux éléments de A. On pose $a = xj_0 + yi_0$.
 - 7.1 On a $a x = xj_0 + yi_0 x = x(j_0 1) + yi_0 = -xi_0 + yi_0 \in I$, de même $a y = xj_0 + yi_0 y = xj_0 + y(i_0 1) = xj_0 yj_0 \in J$.
 - [7.2] On a $\varphi(a) = (\overline{a}, \overline{a}) = (\overline{x} + \overline{a x}, \overline{y} + \overline{a y}) = (\overline{x}, \overline{y})$. Donc φ est surjectif.

[8.] En appliquant le théorème d'isomorphisme, il suffit alors de montrer que $\ker \varphi = I \cap J$. En effet si $x \in I \cap J$, alors $\varphi(x) = (\overline{x}, \overline{x}) = 0$, donc $I \cap J \subseteq \ker \varphi$. Réciproquement, si $x \in \ker \varphi$, alors $\varphi(x) = (\overline{x}, \overline{x}) = 0$, par suite $x \in I$ et $x \in J$, d'où $x \in I \cap J$. Il vient alors que $\ker \varphi = I \cap J$.

Troisième partie : Idempotent et produit

On suppose que A admet un élément idempotent e différent de 0 et de 1. Notons I (respectivement f) l'idéal de f engendré par f (respectivement par f).

- 9. On a $1 = e + (1 e) \in I + J$, donc I + J = A.
- 10. Soit $x \in I \cap J$, il existe $a \in A$ tel que x = ae et il existe $b \in A$ tel que x = b(1 e). On a $xe = b(1-e)e = b(e-e^2) = 0$ et $x(1-e) = ae(1-e) = a(e-e^2) = 0$, donc x = (1-e+e)x = (1-e)x + ex = 0.
- On a I+J=A et $I\cap J=\{0\}$, d'après le résultat de partie précédente, $A=A/(I\cap J)$ est isomorphe à $(A/I)\times (A/J)$. Il reste à montrer que les deux anneaux A/I et A/J ne sont pas réduits à un seul élément. Si $\overline{0}=\overline{1}$ dans A/I, alors $1=\alpha e$ où $\alpha\in A$, puis $1-e=\alpha e(1-e)=0$, ce qui conduit à 1=e (mais $e\neq 1$). De même si $\overline{1}=\overline{0}$ dans A/J, alors $1=\beta(1-e)$ où $\beta\in A$, puis $e=\beta(1-e)e=0$ (mais $e\neq 0$).